Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(8): 3225-3239, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37530141

RESUMO

We report here a small library of a new type of acyclic squaramide receptors (L1-L5) as selective ionophores for the detection of ketoprofen and naproxen anions (KF- and NS-, respectively) in aqueous media. 1H NMR binding studies show a high affinity of these squaramide receptors toward KF- and NS-, suggesting the formation of H-bonds between the two guests and the receptors through indole and -NH groups. Compounds L1-L5 have been tested as ionophores for the detection of KF- and NS- inside solvent PVC-based polymeric membranes. The optimal membrane compositions were established through the careful variation of the ligand/tridodecylmethylammonium chloride (TDMACl) anion-exchanger ratio. All of the tested acyclic squaramide receptors L1-L5 have high affinity toward KF- and NS- and anti-Hofmeister selectivity, with L4 and L5 showing the highest sensitivity and selectivity to NS-. The utility of the developed sensors for a high precision detection of KF- in pharmaceutical compositions with low relative errors of analysis (RSD, 0.99-1.4%) and recoveries, R%, in the range 95.1-111.8% has been demonstrated. Additionally, the chemometric approach has been involved to effectively discriminate between the structurally very similar KF- and NS-, and the possibility of detecting these analytes at concentrations as low as 0.07 µM with R2 of 0.947 and at 0.15 µM with R2 of 0.919 for NS- and KF-, respectively, was shown.


Assuntos
Quinina , Ionóforos/química , Ânions/análise
2.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420880

RESUMO

Nowadays, the electronic nose (e-nose) has gained a huge amount of attention due to its ability to detect and differentiate mixtures of various gases and odors using a limited number of sensors. Its applications in the environmental fields include analysis of the parameters for environmental control, process control, and confirming the efficiency of the odor-control systems. The e-nose has been developed by mimicking the olfactory system of mammals. This paper investigates e-noses and their sensors for the detection of environmental contaminants. Among different types of gas chemical sensors, metal oxide semiconductor sensors (MOXs) can be used for the detection of volatile compounds in air at ppm and sub-ppm levels. In this regard, the advantages and disadvantages of MOX sensors and the solutions to solve the problems arising upon these sensors' applications are addressed, and the research works in the field of environmental contamination monitoring are overviewed. These studies have revealed the suitability of e-noses for most of the reported applications, especially when the tools were specifically developed for that application, e.g., in the facilities of water and wastewater management systems. As a general rule, the literature review discusses the aspects related to various applications as well as the development of effective solutions. However, the main limitation in the expansion of the use of e-noses as an environmental monitoring tool is their complexity and lack of specific standards, which can be corrected through appropriate data processing methods applications.


Assuntos
Nariz Eletrônico , Odorantes , Animais , Odorantes/análise , Gases/análise , Monitoramento Ambiental/métodos , Óxidos , Mamíferos
3.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241842

RESUMO

In this work, we have described the synthesis and characterization of novel zinc (II) phthalocyanine bearing four 2-(2,4-dichloro-benzyl)-4-(1,1,3,3-tetramethyl-butyl)-phenoxy substituents on the peripheral positions. The compound was characterized by elemental analysis and different spectroscopic techniques, such as FT-IR, 1H NMR, MALDI-TOF, and UV-Vis. The Zn (II) phthalocyanine shows excellent solubility in organic solvents such as dichloromethane (DCM), n-hexane, chloroform, tetrahydrofuran (THF), and toluene. Photochemical and electrochemical characterizations of the complex were performed by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. Its good solubility allows a direct deposition of this compound as film, which has been tested as a solid-state sensing material in gravimetric chemical sensors for gas detection, and the obtained results indicate its potential for qualitative discrimination and quantitative assessment of various volatile organic compounds, among them methanol, n-hexane, triethylamine (TEA), toluene and DCM, in a wide concentration range.

5.
Chemistry ; 28(49): e202201062, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622380

RESUMO

A new series of ligands containing the 2-(2-hydroxy-3- naphthyl)-4-methylbenzoxazole (HNBO) fluorophore showed selectivity for Mg2+ ions, without the interference of Ca2+ . The most promising representative L3 resulted the best performing sensor for Mg2+ both in solution and embedded in an all-solid-state optode, especially towards real samples of drinkable water.


Assuntos
Água Potável , Corantes Fluorescentes , Ionóforos , Íons
6.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408267

RESUMO

Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Monitoramento Ambiental , Poluentes Ambientais/análise
7.
Sensors (Basel) ; 21(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204672

RESUMO

The large-scale cultivation of microalgae provides a wide spectrum of marketable bioproducts, profitably used in many fields, from the preparation of functional health products and feed supplement in aquaculture and animal husbandry to biofuels and green chemistry agents. The commercially successful algal biomass production requires effective strategies to maintain the process at desired productivity and stability levels. Hence, the development of effective early warning methods to timely indicate remedial actions and to undertake countermeasures is extremely important to avoid culture collapse and consequent economic losses. With the aim to develop an early warning method of algal contamination, the potentiometric E-tongue was applied to record the variations in the culture environments, over the whole growth process, of two unialgal cultures, Phaeodactylum tricornutum and a microalgal contaminant, along with those of their mixed culture. The E-tongue system ability to distinguish the cultures and to predict their growth stage, through the application of multivariate data analysis, was shown. A PLS regression method applied to the E-tongue output data allowed a good prediction of culture growth time, expressed as growth days, with R2 values in a range from 0.913 to 0.960 and RMSEP of 1.97-2.38 days. Moreover, the SIMCA and PLS-DA techniques were useful for cultures contamination monitoring. The constructed PLS-DA model properly discriminated 67% of cultures through the analysis of their growth media, i.e., environments, thus proving the potential of the E-tongue system for a real time monitoring of contamination in microalgal intensive cultivation.


Assuntos
Diatomáceas , Microalgas , Animais , Biocombustíveis , Biomassa , Língua
8.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200917

RESUMO

Ketoprofen-l-lysine salt (KLS) is a widely used nonsteroidal anti-inflammatory drug. Here, we studied deeply the solid-state characteristics of KLS to possibly identify new polymorphic drugs. Conducting a polymorph screening study and combining conventional techniques with solid-state nuclear magnetic resonance, we identified, for the first time, a salt/cocrystal polymorphism of the ketoprofen (KET)-lysine (LYS) system, with the cocrystal, KET-LYS polymorph 1 (P1), being representative of commercial KLS, and the salt, KET-LYS polymorph 2 (P2), being a new polymorphic form of KLS. Interestingly, in vivo pharmacokinetics showed that the salt polymorph has significantly higher absorption and, thus, different pharmacokinetics compared to commercial KLS (cocrystal), laying the basis for the development of faster-release/acting KLS formulations. Moreover, intrinsic dissolution rate (IDR) and electronic tongue analyses showed that the salt has a higher IDR, a more bitter taste, and a different sensorial kinetics compared to the cocrystal, suggesting that different coating/flavoring processes should be envisioned for the new compound. Thus, the new KLS polymorphic form with its different physicochemical and pharmacokinetic characteristics can open the way to the development of a new KET-LYS polymorph drug that can emphasize the properties of commercial KLS for the treatment of acute inflammatory and painful conditions.

9.
Sensors (Basel) ; 21(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671289

RESUMO

The metalloporphyrin ligand bearing incorporated anion-exchanger fragment, 5-[4-(3-trimethylammonium)propyloxyphenyl]-10,15,20-triphenylporphyrinate of Co(II) chloride, CoTPP-N, has been tested as anion-selective ionophore in PVC-based solvent polymeric membrane sensors. A plausible sensor working mechanism includes the axial coordination of the target anion on ionophore metal center followed by the formed complex aggregation with the second ionophore molecule through positively charged anion-exchanger fragment. The UV-visible spectroscopic studies in solution have revealed that the analyte concentration increase induces the J-type porphyrin aggregation. Polymeric membranes doped with CoTPP-N showed close to the theoretical Nernstian response toward nitrite ion, preferably coordinated by the ionophore, and were dependent on the presence of additional membrane-active components (lipophilic ionic sites and ionophore) in the membrane phase. The resulting selectivity was a subject of specific interaction and/or steric factors. Moreover, it was demonstrated theoretically and confirmed experimentally that the selection of a proper ratio of ionophore and anionic additive can optimize the sensor selectivity and lifetime.

10.
Sensors (Basel) ; 20(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708481

RESUMO

The efficiency of electronic noses in detecting and identifying microorganisms has been proven by several studies. Since volatile compounds change with the growth of colonies, the identification of strains is highly dependent on the growing conditions. In this paper, the effects of growth were investigated with different species of Aspergillus, which is one of the most studied microorganisms because of its implications in environmental and food safety. For this purpose, we used an electronic nose previously utilized for volatilome detection applications and based on eight porphyrins-functionalized quartz microbalances. The volatile organic compounds (VOCs) released by cultured fungi were measured at 3, 5, and 10 days after the incubation. The signals from the sensors showed that the pattern of VOCs evolve with time. In particular, the separation between the three studied strains progressively decreases with time. The three strains could still be identified despite the influence of culture time. Linear Discriminant Analysis (LDA) showed an overall accuracy of 88% and 71% in the training and test sets, respectively. These results indicate that the presence of microorganisms is detectable with respect to background, however, the difference between the strains changes with the incubation time.


Assuntos
Aspergillus/química , Aspergillus/classificação , Nariz Eletrônico , Compostos Orgânicos Voláteis/análise , Análise Discriminante
11.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033030

RESUMO

A potentiometric E-tongue system based on low-selective polymeric membrane and chalcogenide-glass electrodes is employed to monitor the taste-and-odor-causing pollutants, geosmin (GE) and 2-methyl-isoborneol (MIB), in drinkable water. The developed approach may permit a low-cost monitoring of these compounds in concentrations near the odor threshold concentrations (OTCs) of 20 ng/L. The experiments demonstrate the success of the E-tongue in combination with partial least squares (PLS) regression technique for the GE/MIB concentration prediction, showing also the possibility to discriminate tap water samples containing these compounds at two concentration levels: the same OTC order from 20 to 100 ng/L and at higher concentrations from 0.25 to 10 mg/L by means of PLS-discriminant analysis (DA) method. Based on the results, developed multisensory system can be considered a promising easy-to-handle tool for express evaluation of GE/MIB species and to provide a timely detection of alarm situations in case of extreme pollution before the drinkable water is delivered to end users.


Assuntos
Canfanos/isolamento & purificação , Água Potável/análise , Naftóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Canfanos/química , Nariz Eletrônico/tendências , Humanos , Naftóis/química , Potenciometria/tendências , Poluentes Químicos da Água/química
12.
Methods Mol Biol ; 2027: 181-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309482

RESUMO

The procedures for response standardization in "electronic tongue" (ET) studies are described. The construction of reliable multivariate calibration for "electronic tongue" requires the analysis of a large number of representative samples both with ET and reference techniques. This is a laborious and expensive process. Long-term sensor array operation leads to the changes in sensor response characteristics and thus invalidates the multivariate predictive models. Moreover, due to the individual parameters of each sensor in different sensor arrays, it is not possible to use the calibration model for one system together with the data acquired by another system, even if they have the same sensors. Both of these issues lead to the necessity of frequent sensor array calibration which would be ideal to avoid. Instead of recalibration, these two problems can be handled using mathematical methods intended for sensor response standardization. This chapter describes two popular methods of standardization which can be used for both drift correction and calibration transfer. Thus, significant efforts on measuring representative sample sets for sensor array recalibration can be avoided.


Assuntos
Nariz Eletrônico/normas , Modelos Químicos , Calibragem , Potenciometria/instrumentação , Potenciometria/métodos , Potenciometria/normas , Padrões de Referência , Análise Espectral/instrumentação , Análise Espectral/métodos , Análise Espectral/normas
14.
Sensors (Basel) ; 18(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087269

RESUMO

The potentiometric electronic tongue system has been tested as a potential analytical tool for brand uniformity control of monoculture Apulian red wines (Primitivo and Negroamaro). The sensor array was composed of eight porphyrin coatings obtained by electrochemical polymerization process and was employed for both wines discrimination and quantitative detection of wine defect compounds: "off-odour" 3-(methylthio)-propanol; isoamyl alcohol fusel oil; benzaldehyde (marker of the yeast activity) and acetic acid (marker of vinegar formation). PLS-DA applied to Electronic tongue output data has permitted a correct discrimination of more than 70% of analysed wines in respect to the original brand affiliation. Satisfactory PLS1 predictions were obtained in real wine samples; with R² = 0.989 for isoamyl alcohol and R² = 0.732 for acetic acid. Moreover; the possibility to distinguish wine samples on the base of permitted levels of fault compounds content was shown.

15.
Front Chem ; 6: 258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003078

RESUMO

The development of a novel all-solid-state optical sensor array based on heteroatomic macrocyclic fluorophores (diaza-crown ether, metallocorrole and pyridinophans) for the photographic analysis of liquid media, is presented. The sensitivity of the new optical system toward a number of different species (cations: Li+, K+, Na+, NH4+ , Mg2+, Ca2+, Co2+, Cu2+, Zn2+, Cd2+, Pb2+ and anions: NO2- , NO3- , Cl-, Br-, HCO3- ) was evaluated both in single selective sensor mode and in multisensory arrangement. The satisfactory PLS1 regression models between sensor array optical response and analyte concentration were obtained for Cd2+, Cu2+, Zn2+, and NO2- ions in all the range of tested concentrations. Among these species the highest attention was focused onto detection of cadmium and nitrite ions, for which the detection limits, DL, estimated by 3σ method were found 0.0013 mg/L and 0.21 mg/L respectively, and these values are lower than the corresponding WHO guideline values of 0.003 mg/L (Cd2+) and 2 mg/L ( NO2- ). The suitability of the developed sensors implemented with familiar devices for signal acquisition (Light Emitting Diode, LED, as light source and a digital camera as a signal detector), and chemometric methods for data treatment to perform fast and low-cost monitoring of species under interest, in real samples of environmental importance, is demonstrated.

16.
Chem Commun (Camb) ; 54(22): 2747-2750, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29479587

RESUMO

We present here the development of an all-solid-state optical sensor based on phenyl-substituted diaza-18-crown-6 hydroxyquinoline (DCHQ-Ph) for the indirect selective detection of microcystin-LR (MC-LR), reaching a very low detection limit of 0.05 µg L-1, well below the World Health Organisation (WHO) guideline value (1 µg L-1) in potable water. We demonstrate the potential applicability of the developed method in fast and low-cost water toxicity estimation.


Assuntos
Éteres de Coroa/química , Fluorometria , Microcistinas/análise , Fenômenos Ópticos , Toxinas Marinhas , Estrutura Molecular
17.
Talanta ; 179: 430-441, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310257

RESUMO

The development of efficient analytical procedures for the selective detection of magnesium is an important analytical task, since this element is one of the most abundant metals in cells and plays an essential role in a plenty of cellular processes. Magnesium misbalance has been related to several pathologies and diseases both in plants and animals, as far as in humans, but the number of suitable methods for magnesium detection especially in life sample and biological environments is scarce. Chemical sensors, due to their high reliability, simplicity of handling and instrumentation, fast and real-time in situ and on site analysis are promising candidates for magnesium analysis and represent an attractive alternative to the standard instrumental methods. Here the recent achievements in the development of chemical sensors for magnesium ions detection over the last decade are reviewed. The working principles and the main types of sensors applied are described. Focus is placed on the optical sensors and multisensory systems applications for magnesium assessment in different media. Further, a critical outlook on the employment of multisensory approach in comparison to single selective sensors application in biological samples is presented.

18.
Dyes Pigm ; 99(1)2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24347747

RESUMO

A novel method for the preparation of ß-fused porphyrin dyads was developed that exploits a one-pot reaction of 2,3-diaminoporphyrins with diethyl oxalate. This approach provides good yields of the zinc ß-fused dyad and the corresponding free-base, opening the way for preparation of several metal derivatives to permit modulation of optoelectronic characteristics for commercial applications.

19.
Chemistry ; 19(43): 14639-53, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24027223

RESUMO

Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg(2+) ion binding, the development of fluorescence-based devices for in-field Hg(2+) detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg(2+) ions in MeCN/H2 O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg(2+) ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg(2+) ions in natural water samples.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Mercúrio/análise , Nanopartículas/química , Espectrometria de Fluorescência , Animais , Células COS , Chlorocebus aethiops , Íons/química , Microscopia Confocal , Polietilenoglicóis/química , Cloreto de Polivinila/química , Teoria Quântica , Água/química
20.
Sensors (Basel) ; 13(5): 5841-56, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23653052

RESUMO

5,10,15,20-Tetraferrocenyl porphyrin, H2TFcP, a simple example of a donor-acceptor system, was tested as ligand for the development of a novel multi-transduction chemical sensors aimed at the determination of transition metal ions. The fluorescence energy transfer between ferrocene donor and porphyrin acceptor sub-units was considered. The simultaneously measured optical and potentiometric responses of solvent polymeric membranes based on H2TFcP permitted the detection of lead ions in sample solutions, in the concentration range from 2.7 × 10(-7) to 3.0 × 10(-3) M. The detection limit of lead determination was 0.27 µM, low enough to perform the direct analysis of Pb2+ in natural waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...